skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Uehling, Jessie K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. EndofungalMycetohabitans(formerlyBurkholderia) spp. rely on a type III secretion system to deliver mostly unidentified effector proteins when colonizing their host fungus,Rhizopus microsporus. The one known secreted effector family fromMycetohabitansconsists of homologues of transcription activator-like (TAL) effectors, which are used by plant pathogenicXanthomonasandRalstoniaspp. to activate host genes that promote disease. These ‘BurkholderiaTAL-like (Btl)’ proteins bind corresponding specific DNA sequences in a predictable manner, but their genomic target(s) and impact on transcription in the fungus are unknown. Recent phenotyping of Btl mutants of twoMycetohabitansstrains revealed that the single Btl in oneMycetohabitans endofungorumstrain enhances fungal membrane stress tolerance, while others in aMycetohabitans rhizoxinicastrain promote bacterial colonization of the fungus. The phenotypic diversity underscores the need to assess the sequence diversity and, given that sequence diversity translates to DNA targeting specificity, the functional diversity of Btl proteins. Using a dual approach to maximize capture of Btl protein sequences for our analysis, we sequenced and assembled nineMycetohabitansspp. genomes using long-read PacBio technology and also mined available short-read Illumina fungal–bacterial metagenomes. We show thatbtlgenes are present across diverseMycetohabitansstrains from Mucoromycota fungal hosts yet vary in sequences and predicted DNA binding specificity. Phylogenetic analysis revealed distinct clades of Btl proteins and suggested thatMycetohabitansmight contain more species than previously recognized. Within our data set, Btl proteins were more conserved acrossM. rhizoxinicastrains than acrossM. endofungorum, but there was also evidence of greater overall strain diversity within the latter clade. Overall, the results suggest that Btl proteins contribute to bacterial–fungal symbioses in myriad ways. 
    more » « less